Challenges

- How can we better support interdisciplinarity in the liberal arts?
- Should the first course prepare majors and/or serve mostly a non-major • audience?

Responses

- An interdisciplinary, problem-focused introductory course
- A (truly) interdisciplinary data analytics program

Curricular Innovations for Computing Education in the Liberal Arts

Jessen Havill, Denison University, havill@denison.edu

Contents

Indels and pseudogenes 62 Substitutions vs. mutations 62 Fixation 63

Estimating Substitution Numbers 65 Jukes-Cantor model 65 Transitions and transversions 67 Kimura's two-parameter model 67 Models with even more parameters 68 Substitutions between protein sequences 69

Variations in Evolutionary Rates between Genes 70

Molecular Clocks 71 Relative rate test 71 Causes of rate variation in lineages 73

Evolution in Organelles 74

Chapter Summary 74

Ouestions and Problems 75

Distance-Based Methods of Phylogenetics 77

History of Molecular Phylogenetics 78 Advantages to Molecular Phylogenies 79

Phylogenetic Trees 80 Terminology of tree reconstruction 80 Rooted and unrooted trees 81 Gene vs. species trees 83 Character and distance data 84

Distance Matrix Methods 85 UPGMA 86

Estimation of branch lengths 88 Transformed distance method 90 Neighbor's relation method 91 Neighbor-joining methods 92

Maximum Likelihood Approaches 93

Chapter Summary 94

vi

Contents

Readings for Greater Depth 95 Questions and Problems 95

5

Parsimony 98 Informative and uninformative sites 98 Unweighted parsimony 99 Weighted parsimony 104

Inferred Ancestral Sequences 104

Branch and bound 105 Heuristic searches 107

Consensus Trees 108

Tree Confidence 109 Bootstrapping 109 Parametric tests 111

Molecular Phylogenies 112 The tree of life 112 Human origins 114

Chapter Summary 114 Readings for Greater Depth 115 Ouestions and Problems 115

6 Genomics and Gene Recognition 117

Prokaryotic Genomes 118

Prokaryotic Gene Structure 120 Promoter elements 121 Open reading frames 124 Conceptual translation 125 Termination sequences 125

GC Content in Prokaryotic Genomes 126 Prokaryotic Gene Density 127

Molecular Biology and Biological Chemistry 1

The Genetic Material 2 Nucleotides 2 Orientation 3 Base pairing 5 The central dogma of molecular biology 6

Gene Structure and Information Content 7 Promoter sequences 7 The genetic code 9 Open reading frames 9 Introns and exons 12

Protein Structure and Function 13 Primary structure 13 Secondary, tertiary, and quaternary structure 14 The Nature of Chemical Bonds 15

Anatomy of an atom 17 Valence 17 Electronegativity 18 Hydrophilicity and hydrophobicity 19

Molecular Biology Tools 19 Restriction enzyme digests 20 Gel electrophoresis 21 Blotting and hybridization 21 Cloning 23 Polymerase chain reaction 24 DNA sequencing 25

iv Contents

> Genomic Information Content 27 C-value paradox 27 Reassociation kinetics 28 Chapter Summary 30 **Readings for Greater Depth 31 Ouestions and Problems 31**

Data Searches and Pairwise Alignments 33

Dot Plots 34

Simple Alignments 35

Gaps 36 Simple gap penalties 37 Origination and length penalties 37

Scoring Matrices 38

Dynamic Programming: The Needleman and Wunsch Algorithm 41

Global and Local Alignments 45 Semiglobal alignments 45 The Smith-Waterman Algorithm 46

Database Searches 48 BLAST and its relatives 48 FASTA and related algorithms 50 Alignment scores and statistical significance of database searches 51

Multiple Sequence Alignments 52

Chapter Summary 53

Readings for Greater Depth 53

Ouestions and Problems 54

Substitution Patterns 57

Patterns of Substitutions within Genes 58 Mutation rates 58 Functional constraint 59 Synonymous vs. nonsynonymous substitutions 61

Readings for Greater Depth 74

Multiple Sequence Alignments 93

Character-Based Methods of Phylogenetics 97

Strategies for Faster Searches 105

Comparison of Phylogenetic Methods 112

Eukaryotic Genomes 127

Eukaryotic Gene Structure 129 Promoter elements 130 Regulatory protein binding sites 131

Open Reading Frames 133 Introns and exons 134 Alternative splicing 135

GC Content in Eukaryotic Genomes 137 CpG islands 137 Isochores 141 Codon usage bias 142 Gene Expression 143

cDNAs and ESTs 143 Serial analysis of gene expression 145 Microarrays 145

Transposition 148

Repetitive Elements 148

Eukaryotic Gene Density 150

Chapter Summary 151

Readings for Greater Depth 151 Questions and Problems 152

Protein and RNA Structure Prediction 155

Amino Acids 156

Polypeptide Composition 159

Secondary Structure 160 Backbone flexibility, Φ and Ψ 160 Accuracy of predictions 161 The Chou-Fasman and GOR methods 162

Tertiary and Quaternary Structure 164 Hydrophobicity 165 Disulfide bonds 166 Active structures vs. most stable structures 167

Algorithms for Modeling Protein Folding 167 Lattice models 168

viii Contents

> Off-lattice models 170 Energy functions and optimization 171

Structure Prediction 172 Comparative modeling 173 Threading: Reverse protein folding 174

Predicting RNA Secondary Structures 175

Chapter Summary 176 **Readings for Greater Depth 177**

Questions and Problems 178

Proteomics 179

From Genomes to Proteomes 180

Protein Classification 181 Enzyme nomenclature 181 Families and superfamilies 182 Folds 183

Experimental Techniques 184 2D electrophoresis 184 Mass spectrometry 185 Protein microarrays 187

Inhibitors and Drug Design 187

Ligand Screening 188 Ligand docking 189 Database screening 190

X-Ray Crystal Structures 191

NMR Structures 197

Empirical Methods and Prediction Techniques 197

Post-Translational Modification Prediction 198 Protein sorting 199 Proteolytic cleavage 202 Glycosylation 202

Phosphorylation 203 Chapter Summary 203

Readings for Greater Depth 204

Questions and Problems 205

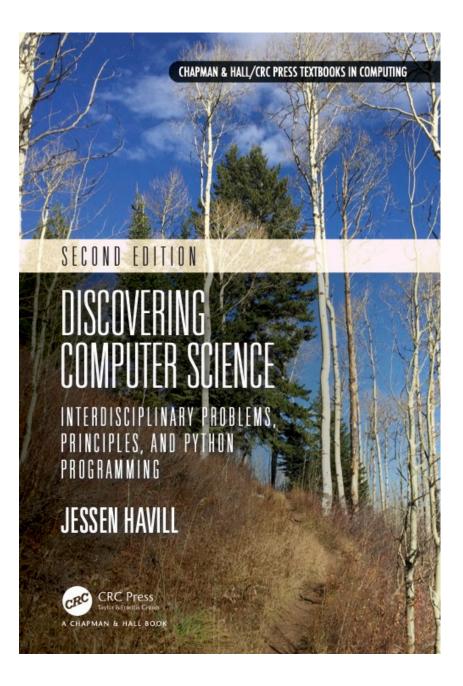
		Contents	Contents	xii	xi		Contents	
	3 Molecular Biology Primer	57	В	Biobox: David Sankoff	139	8.8 SBH as an Eulerian Path Problem	272	
	3.1 What Is Life Made Of?	57		Problems	143	8.9 Fragment Assembly in DNA Sequencing	275	
	3.2 What Is the Genetic Material?	59				8.10 Protein Sequencing and Identification	280	
	3.3 What Do Genes Do?	60	6 Dynam	nic Programming Algorithms	147	8.11 The Peptide Sequencing Problem	284	
	3.4 What Molecule Codes for Genes?	61	6.1 T	he Power of DNA Sequence Comparison	147	8.12 Spectrum Graphs	287	
	3.5 What Is the Structure of DNA?	61	6.2 T	he Change Problem Revisited	148	8.13 Protein Identification via Database Search	290	
	3.6 What Carries Information between DNA and Proteins?	63	6.3 T	he Manhattan Tourist Problem	153	8.14 Spectral Convolution	292	Contents
	3.7 How Are Proteins Made?	65	6.4 E	Edit Distance and Alignments	167	8.15 Spectral Alignment	293	
	3.8 How Can We Analyze DNA?	67	6.5 L	ongest Common Subsequences	172	8.16 Notes	299	11 Hidden Markov Models
	3.8.1 Copying DNA	67	6.6 G	Global Sequence Alignment	177	8.17 Problems	302	11.1 <i>CG</i> -Islands and the "Fair Bet Casino"
	3.8.2 Cutting and Pasting DNA	71	6.7 Se	coring Alignments	178			11.2 The Fair Bet Casino and Hidden Markov Models
	3.8.3 Measuring DNA Length	72	6.8 L	ocal Sequence Alignment	180	9 Combinatorial Pattern Matching	311	11.3 Decoding Algorithm
	3.8.4 Probing DNA	72	6.9 A	Alignment with Gap Penalties	184	9.1 Repeat Finding	311	11.4 HMM Parameter Estimation
xv	3.9 How Do Individuals of a Species Differ?	73	6.10 N	/ultiple Alignment	185	9.2 Hash Tables	313	11.5 Profile HMM Alignment
	3.10 How Do Different Species Differ?	74	6.11 G	Sene Prediction	193	9.3 Exact Pattern Matching	316	11.6 Notes
1	3.11 Why Bioinformatics?	75	6.12 St	tatistical Approaches to Gene Prediction	197	9.4 Keyword Trees	318	Biobox: David Haussler
	Biobox: Russell Doolittle	79	6.13 Si	imilarity-Based Approaches to Gene Prediction	200	9.5 Suffix Trees	320	11.7 Problems
7			6.14 Sj	pliced Alignment	203	9.6 Heuristic Similarity Search Algorithms	324	
7	4 Exhaustive Search	83	6.15 N	Jotes	207	9.7 Approximate Pattern Matching	326	12 Randomized Algorithms
14	4.1 Restriction Mapping	83	В	Biobox: Michael Waterman	209	9.8 BLAST: Comparing a Sequence against a Database	330	12.1 The Sorting Problem Revisited
17	4.2 Impractical Restriction Mapping Algorithms	87	6.16 P	Problems	211	9.9 Notes	331	12.2 Gibbs Sampling
20	4.3 A Practical Restriction Mapping Algorithm	89				Biobox: Gene Myers	333	12.3 Random Projections
24	4.4 Regulatory Motifs in DNA Sequences	91		-and-Conquer Algorithms	227	9.10 Problems	337	12.4 Notes
28	4.5 Profiles	93		Divide-and-Conquer Approach to Sorting	227			12.5 Problems
33	4.6 The Motif Finding Problem	97		pace-Efficient Sequence Alignment	230	10 Clustering and Trees	339	Using Bioinformatics Tools
37	4.7 Search Trees	100		Block Alignment and the Four-Russians Speedup	234	10.1 Gene Expression Analysis	339	Using Diomiormatics 10015
40	4.8 Finding Motifs	108		Constructing Alignments in Subquadratic Time	238	10.2 Hierarchical Clustering	343	Bibliography
41	4.9 Finding a Median String	111		lotes	240	10.3 <i>k</i> -Means Clustering	346	017
42	4.10 Notes	114		Biobox: Webb Miller	241	10.4 Clustering and Corrupted Cliques	348	Index
43	Biobox: Gary Stormo	116	7.6 P	Problems	244	10.5 Evolutionary Trees	354	
43	4.11 Problems	119		A 1 1 1 1	0.47	10.6 Distance-Based Tree Reconstruction	358	
48		40-		Algorithms	247	10.7 Reconstructing Trees from Additive Matrices	361	
48	5 Greedy Algorithms	125		Graphs	247	10.8 Evolutionary Trees and Hierarchical Clustering	366	
48	5.1 Genome Rearrangements	125		Graphs and Genetics	260	10.9 Character-Based Tree Reconstruction	368	
40 49	5.2 Sorting by Reversals	127		DNA Sequencing	262	10.10 Small Parsimony Problem	370	
4フ E1	5.3 Approximation Algorithms	131		hortest Superstring Problem	264	10.11 Large Parsimony Problem	374	
51	5.4 Breakpoints: A Different Face of Greed	132		DNA Arrays as an Alternative Sequencing Technique	265	10.12 Notes Bishow Bon Shamin	379	
92 54	5.5 A Greedy Approach to Motif Finding	136 127		equencing by Hybridization	268	Biobox: Ron Shamir	380	
94	5.6 Notes	137	8.7 S	BH as a Hamiltonian Path Problem	271	10.13 Problems	384	

Contents

Preface

1	Intro	oduction							
2	Algo	rithms and Complexity							
	2.1	What I	t Is an Algorithm?						
	2.2	Biologi	ological Algorithms versus Computer Algorithms						
	2.3	The Change Problem							
	2.4	Correct versus Incorrect Algorithms							
	2.5	Recursive Algorithms							
	2.6	Iterative versus Recursive Algorithms							
	2.7	Fast versus Slow Algorithms							
	2.8	Big-O Notation							
	2.9	Algorithm Design Techniques							
		2.9.1	Exhaustive Search						
		2.9.2	Branch-and-Bound Algorithms						
		2.9.3	Greedy Algorithms						
		2.9.4	Dynamic Programming						
		2.9.5	Divide-and-Conquer Algorithms						
		2.9.6	Machine Learning						
		2.9.7	Randomized Algorithms						
	2.10	Tractable versus Intractable Problems							
	2.11	Notes							
		Biobox: Richard Karp							

x

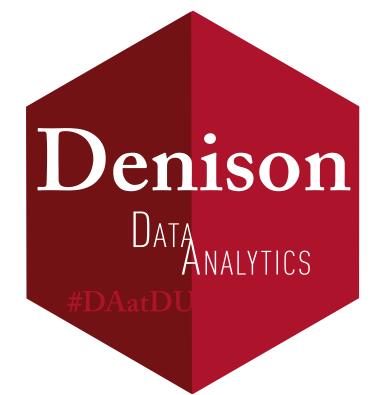

2.12 Problems

xiii

An interdisciplinary, problem-focused introductory course

- Do students want to learn about if statements and while loops?
- Or do they want to learn how to solve problems?
- Multiple problem-focused "flavors"
- no prerequisites, for all students •
- Python
- Polya's four steps: understand, plan, code, look back
- Pair programming •
- 2 subsequent courses—Intermediate CS and Data Structures—flesh things out for majors (in C++)

Curricular Innovations for Computing Education in the Liberal Arts


Jessen Havill, Denison University, havill@denison.edu

A (Truly) Interdisciplinary Data Analytics program

- Data "Analytics" vs. Data "Science"
- academic program outside Math & CS with an interdisciplinary program committee
- DA faculty: ecology, political science, digital humanities, statistics, OR
- projects drawn from diverse set of disciplines with varied concerns
- low barrier to entry: no prerequisites, shorter Math & CS sequence •
- size of major allows broad exploration, study abroad, etc.
- comfort with uncertainty and ambiguity
- communication with various audiences visual, written, oral
- ethical and social implications of data collection and presentation

Curricular Innovations for Computing Education in the Liberal Arts

Biology **Computer Science** Economics **Environmental Science** Mathematics Philosophy Physics **Political Science** Psychology Sociology

Jessen Havill, Denison University, havill@denison.edu

