
Session on Curricular Challenges and Responses

Three Interconnected Challenges 

• Meeting the needs of both majors and non-majors
• Incorporating paradigms/multiple views of problem solving within the curriculum
• Leveling the playing field for beginning students who arrive with varying backgrounds
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Coordinated Responses 

Majors versus non-majors

▪ At Grinnell, students do not have to declare majors until the end of their second year

▪ Cannot distinguish between majors and non-majors in introductory CS courses

▪ CS1 focuses on algorithmic problem solving and functional programming---a good start for any student, 
whether a potential major or not

▪ Introductory CS courses meet needs of both majors and non-majors

▪ In practice, large fraction of potential majors (perhaps 2/3) did not consider CS before entering Grinnell

▪ Eventual majors captivated by CS1, CS2, ...

▪ Grinnell has a separate non-majors course

▪ Mostly taken by juniors and seniors

▪ Focus on algorithmic thinking and computing topics the common citizen should know about.  

▪ In practice, this is a fine service course, but has relatively low demand.
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Multiple views of problem solving/Leveling the playing field

▪ At Grinnell, we highlight multiple views of problem solving early.
▪ The college faculty understand multiple perspectives fit well with study of the liberal arts.
▪ Few other programs within the college care what problem-solving is done in CS
▪ Thus, CS program is free to do what it wants.

▪ CS1:  functional problem solving (supported by Scheme)
▪ New to almost all students, so helps neutralize different backgrounds among incoming students
▪ Often includes an application theme (e.g., image processing, data analytics)

▪ CS2: imperative problem solving (supported by C)
▪ Includes low-level computing elements (e.g., run-time stack, data representation, dynamic memory)
▪ Includes discussion of linked lists, ADTs, stacks, queues
▪ Often includes an application theme (e.g., control of robots)
▪ CS3:  object-oriented problem solving (supported by Java)
▪ Classes, objects, interfaces, inheritance, polymorphism, etc.
▪ Common standard algorithms and data structures (e.g., hash tables, some graphs)
▪ Discussion of efficiency (e.g., Big-O, storage considerations)
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Additional notes

▪ All courses are lab-based with heavy use of pair programming/collaboration

▪ Since CS1 new to all, most students start there 

▪ Students with more background (e.g., from high school) may skip CS2 and/or CS3 (not CS1)

▪ Students with strong AP CS scores

▪ 4 credits earned (credit separated from placement)

▪ Likely start in CS1 (but may or may not skip a later course)

▪ With this multi-paradigm approach early, little need for standard upper-level programming-
paradigms course.

▪ Approach seems to be well received by wide range of diverse populations 

▪ seems to be influenced by numerous factors (e.g., multi-paradigm, lab-based, work in pairs, 
collaboration---building a sense of community, application themes, etc.)


