Session on Curricular Challenges and Responses

Panel Slides from Henry M. Walker, Grinnell College

Three Interconnected Challenges

* Meeting the needs of both majors and non-majors
* |ncorporating paradigms/multiple views of problem solving within the curriculum
* Leveling the playing field for beginning students who arrive with varying backgrounds

Session on Curricular Challenges and Responses

Coordinated Responses

Majors versus non-majors
m At Grinnell, students do not have to declare majors until the end of their second year
s Cannot distinguish between majors and non-majors in introductory CS courses

m CS1 focuses on algorithmic problem solving and functional programming---a good start for any student,
whether a potential major or not

m Introductory CS courses meet needs of both majors and non-majors
m In practice, large fraction of potential majors (perhaps 2/3) did not consider CS before entering Grinnell
= Eventual majors captivated by CS1, CS2, ...
m Grinnell has a separate non-majors course
m Mostly taken by juniors and seniors
m Focus on algorithmic thinking and computing topics the common citizen should know about.

m In practice, this is a fine service course, but has relatively low demand.

Session on Curricular Challenges and Responses

Coordinated Responses

Multiple views of problem solving/Leveling the playing field

= At Grinnell, we highlight multiple views of problem solving early.
s The college faculty understand multiple perspectives fit well with study of the liberal arts.
s Few other programs within the college care what problem-solving is done in CS
m Thus, CS program is free to do what it wants.

m CS1: functional problem solving (supported by Scheme)
s New to almost all students, so helps neutralize different backgrounds among incoming students
s Often includes an application theme (e.g., image processing, data analytics)

s CS2: imperative problem solving (supported by C)
s Includes low-level computing elements (e.g., run-time stack, data representation, dynamic memory)
m Includes discussion of linked lists, ADTs, stacks, queues
s Often includes an application theme (e.g., control of robots)

m CS3: object-oriented problem solving (supported by Java)
m Classes, objects, interfaces, inheritance, polymorphism, etc.
= Common standard algorithms and data structures (e.g., hash tables, some graphs)
m Discussion of efficiency (e.g., Big-O, storage considerations)

Session on Curricular Challenges and Responses
Coordinated Responses

Additional notes
m All courses are lab-based with heavy use of pair programming/collaboration
s Since CS1 new to all, most students start there
s Students with more background (e.g., from high school) may skip CS2 and/or CS3 (not CS1)
s Students with strong AP CS scores
m 4 credits earned (credit separated from placement)
m Likely start in CS1 (but may or may not skip a later course)

s With this multi-paradigm approach early, little need for standard upper-level programming-
paradigms course.

m Approach seems to be well received by wide range of diverse populations

m seems to be influenced by numerous factors (e.g., multi-paradigm, lab-based, work in pairs,
collaboration---building a sense of community, application themes, etc.)

